270 research outputs found

    Shotgun haplotyping: a novel method for surveying allelic sequence variation

    Get PDF
    Haplotypic sequences contain significantly more information than genotypes of genetic markers and are critical for studying disease association and genome evolution. Current methods for obtaining haplotypic sequences require the physical separation of alleles before sequencing, are time consuming and are not scaleable for large surveys of genetic variation. We have developed a novel method for acquiring haplotypic sequences from long PCR products using simple, high-throughput techniques. This method applies modified shotgun sequencing protocols to sequence both alleles concurrently, with read-pair information allowing the two alleles to be separated during sequence assembly. Although the haplotypic sequences can be assembled manually from the resultant data using pre-existing sequence assembly software, we have devised a novel heuristic algorithm to automate assembly and remove human error. We validated the approach on two long PCR products amplified from the human genome and confirmed the accuracy of our sequences against full-length clones of the same alleles. This method presents a simple high-throughput means to obtain full haplotypic sequences potentially up to 20 kb in length and is suitable for surveying genetic variation even in poorly-characterized genomes as it requires no prior information on sequence variation

    IMPROVE-DD: Integrating Multiple Phenotype Resources Optimises Variant Evaluation in genetically determined Developmental Disorders

    Get PDF
    Diagnosing rare developmental disorders using genome-wide sequencing data commonly necessitates review of multiple plausible candidate variants, often using ontologies of categorical clinical terms. We show that Integrating Multiple Phenotype Resources Optimizes Variant Evaluation in Developmental Disorders (IMPROVE-DD) by incorporating additional classes of data commonly available to clinicians and recorded in health records. In doing so, we quantify the distinct contributions of sex, growth, and development in addition to Human Phenotype Ontology (HPO) terms and demonstrate added value from these readily available information sources. We use likelihood ratios for nominal and quantitative data and propose a classifier for HPO terms in this framework. This Bayesian framework results in more robust diagnoses. Using data systematically collected in the Deciphering Developmental Disorders study, we considered 77 genes with pathogenic/likely pathogenic variants in ≥10 individuals. All genes showed at least a satisfactory prediction by receiver operating characteristic when testing on training data (AUC ≥ 0.6), and HPO terms were the best predictor for the majority of genes, though a minority (13/77) of genes were better predicted by other phenotypic data types. Overall, classifiers based upon multiple integrated phenotypic data sources performed better than those based upon any individual source, and importantly, integrated models produced notably fewer false positives. Finally, we show that IMPROVE-DD models with good predictive performance on cross-validation can be constructed from relatively few individuals. This suggests new strategies for candidate gene prioritization and highlights the value of systematic clinical data collection to support diagnostic programs

    Fast-evolving noncoding sequences in the human genome

    Get PDF
    BACKGROUND: Gene regulation is considered one of the driving forces of evolution. Although protein-coding DNA sequences and RNA genes have been subject to recent evolutionary events in the human lineage, it has been hypothesized that the large phenotypic divergence between humans and chimpanzees has been driven mainly by changes in gene regulation rather than altered protein-coding gene sequences. Comparative analysis of vertebrate genomes has revealed an abundance of evolutionarily conserved but noncoding sequences. These conserved noncoding (CNC) sequences may well harbor critical regulatory variants that have driven recent human evolution. RESULTS: Here we identify 1,356 CNC sequences that appear to have undergone dramatic human-specific changes in selective pressures, at least 15% of which have substitution rates significantly above that expected under neutrality. The 1,356 'accelerated CNC' (ANC) sequences are enriched in recent segmental duplications, suggesting a recent change in selective constraint following duplication. In addition, single nucleotide polymorphisms within ANC sequences have a significant excess of high frequency derived alleles and high F(ST)values relative to controls, indicating that acceleration and positive selection are recent in human populations. Finally, a significant number of single nucleotide polymorphisms within ANC sequences are associated with changes in gene expression. The probability of variation in an ANC sequence being associated with a gene expression phenotype is fivefold higher than variation in a control CNC sequence. CONCLUSION: Our analysis suggests that ANC sequences have until very recently played a role in human evolution, potentially through lineage-specific changes in gene regulation

    Exome Sequencing for Prenatal Detection of Genetic Abnormalities in Fetal Ultrasound Anomalies: An Economic Evaluation.

    Get PDF
    INTRODUCTION: In light of the prospective Prenatal Assessment of Genomes and Exomes (PAGE) study, this paper aimed to determine the additional costs of using exome sequencing (ES) alongside or in place of chromosomal microarray (CMA) in a fetus with an identified congenital anomaly. METHODS: A decision tree was populated using data from a prospective cohort of women undergoing invasive diagnostic testing. Four testing strategies were evaluated: CMA, ES, CMA followed by ES ("stepwise"); CMA and ES combined. RESULTS: When ES is priced at GBP 2,100 (EUR 2,407/USD 2,694), performing ES alone prenatally would cost a further GBP 31,410 (EUR 36,001/USD 40,289) per additional genetic diagnosis, whereas the stepwise would cost a further GBP 24,657 (EUR 28,261/USD 31,627) per additional genetic diagnosis. When ES is priced at GBP 966 (EUR 1,107/USD 1,239), performing ES alone prenatally would cost a further GBP 11,532 (EUR 13,217/USD 14,792) per additional genetic diagnosis, whereas the stepwise would cost a further additional GBP 11,639 (EUR 13,340/USD 14,929) per additional genetic diagnosis. The sub-group analysis suggests that performing stepwise on cases indicative of multiple anomalies at ultrasound scan (USS) compared to cases indicative of a single anomaly, is more cost-effective compared to using ES alone. DISCUSSION/CONCLUSION: Performing ES alongside CMA is more cost-effective than ES alone, which can potentially lead to improvements in pregnancy management. The direct effects of test results on pregnancy outcomes were not examined; therefore, further research is recommended to examine changes on the projected incremental cost-effectiveness ratios

    Reduced reproductive success is associated with selective constraint on human genes

    Get PDF
    Genome-wide sequencing of human populations has revealed substantial variation among genes in the intensity of purifying selection acting on damaging genetic variants1. Although genes under the strongest selective constraint are highly enriched for associations with Mendelian disorders, most of these genes are not associated with disease and therefore the nature of the selection acting on them is not known2. Here we show that genetic variants that damage these genes are associated with markedly reduced reproductive success, primarily owing to increased childlessness, with a stronger effect in males than in females. We present evidence that increased childlessness is probably mediated by genetically associated cognitive and behavioural traits, which may mean that male carriers are less likely to find reproductive partners. This reduction in reproductive success may account for 20% of purifying selection against heterozygous variants that ablate protein-coding genes. Although this genetic association may only account for a very minor fraction of the overall likelihood of being childless (less than 1%), especially when compared to more influential sociodemographic factors, it may influence how genes evolve over time

    Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization.

    Get PDF
    BACKGROUND: Large-scale high throughput studies using microarray technology have established that copy number variation (CNV) throughout the genome is more frequent than previously thought. Such variation is known to play an important role in the presence and development of phenotypes such as HIV-1 infection and Alzheimer's disease. However, methods for analyzing the complex data produced and identifying regions of CNV are still being refined. RESULTS: We describe the presence of a genome-wide technical artifact, spatial autocorrelation or 'wave', which occurs in a large dataset used to determine the location of CNV across the genome. By removing this artifact we are able to obtain both a more biologically meaningful clustering of the data and an increase in the number of CNVs identified by current calling methods without a major increase in the number of false positives detected. Moreover, removing this artifact is critical for the development of a novel model-based CNV calling algorithm - CNVmix - that uses cross-sample information to identify regions of the genome where CNVs occur. For regions of CNV that are identified by both CNVmix and current methods, we demonstrate that CNVmix is better able to categorize samples into groups that represent copy number gains or losses. CONCLUSION: Removing artifactual 'waves' (which appear to be a general feature of array comparative genomic hybridization (aCGH) datasets) and using cross-sample information when identifying CNVs enables more biological information to be extracted from aCGH experiments designed to investigate copy number variation in normal individuals.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    DECIPHER: Supporting the interpretation and sharing of rare disease phenotype-linked variant data to advance diagnosis and research.

    Get PDF
    Funder: European Molecular Biology Laboratory; Id: http://dx.doi.org/10.13039/100013060DECIPHER (https://www.deciphergenomics.org) is a free web platform for sharing anonymized phenotype-linked variant data from rare disease patients. Its dynamic interpretation interfaces contextualize genomic and phenotypic data to enable more informed variant interpretation, incorporating international standards for variant classification. DECIPHER supports almost all types of germline and mosaic variation in the nuclear and mitochondrial genome: sequence variants, short tandem repeats, copy-number variants, and large structural variants. Patient phenotypes are deposited using Human Phenotype Ontology (HPO) terms, supplemented by quantitative data, which is aggregated to derive gene-specific phenotypic summaries. It hosts data from >250 projects from ~40 countries, openly sharing >40,000 patient records containing >51,000 variants and >172,000 phenotype terms. The rich phenotype-linked variant data in DECIPHER drives rare disease research and diagnosis by enabling patient matching within DECIPHER and with other resources, and has been cited in >2,600 publications. In this study, we describe the types of data deposited to DECIPHER, the variant interpretation tools, and patient matching interfaces which make DECIPHER an invaluable rare disease resource

    The contribution of X-linked coding variation to severe developmental disorders

    Get PDF
    Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders. Developmental disorders (DDs) are more prevalent in males, thought to be due to X-linked genetic variation. Here, the authors investigate the burden of X-linked coding variants in 11,044 DD patients, showing that this contributes to similar to 6% of both male and female cases and therefore does not solely explain male bias in DDs.Peer reviewe
    • …
    corecore